Source code for orcanet.core

#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Core scripts for the OrcaNet package.
"""

import os
import toml
import warnings
import time
from datetime import timedelta
import tensorflow as tf

import orcanet.backend as backend
from orcanet.utilities.visualization import update_summary_plot
from orcanet.in_out import IOHandler
from orcanet.history import HistoryHandler
from orcanet.utilities.nn_utilities import load_zero_center_data
import orcanet.lib as lib
import orcanet.logging as logging
import orcanet.misc
import medgeconv


[docs]class Organizer: """ Core class for working with networks in OrcaNet. Attributes ---------- cfg : orcanet.core.Configuration Contains all configurable options. io : orcanet.in_out.IOHandler Utility functions for accessing the info in cfg. history : orcanet.in_out.HistoryHandler For reading and plotting data from the log files created during training. """ def __init__( self, output_folder, list_file=None, config_file=None, tf_log_level=None, discover_tomls=True, ): """ Set the attributes of the Configuration object. Instead of using a config_file, the attributes of orga.cfg can also be changed directly, e.g. by calling orga.cfg.batchsize. Parameters ---------- output_folder : str Name of the folder of this model in which everything will be saved, e.g., the summary.txt log file is located in here. Will be used to load saved files or to save new ones. list_file : str, optional Path to a toml list file with pathes to all the h5 files that should be used for training and validation. Will be used to extract samples and labels. Default: Look for a file called 'list.toml' in the given output_folder. config_file : str, optional Path to a toml config file with settings that are used instead of the default ones. Default: Look for a file called 'config.toml' in the given output_folder. tf_log_level : int/str Sets the TensorFlow CPP_MIN_LOG_LEVEL environment variable. 0 = all messages are logged (default behavior). 1 = INFO messages are not printed. 2 = INFO and WARNING messages are not printed. 3 = INFO, WARNING, and ERROR messages are not printed. discover_tomls : bool If False, do not try to look for toml files in the given output_folder if list_file or config_file is None [Default: True]. """ if tf_log_level is not None: os.environ["TF_CPP_MIN_LOG_LEVEL"] = str(tf_log_level) if discover_tomls and list_file is None: list_file = orcanet.misc.find_file(output_folder, "list.toml") if discover_tomls and config_file is None: config_file = orcanet.misc.find_file(output_folder, "config.toml") self.cfg = Configuration(output_folder, list_file, config_file) self.io = IOHandler(self.cfg) self.history = HistoryHandler(output_folder) self.xs_mean = None self._auto_label_modifier = None self._stored_model = None self._strategy = None
[docs] def train_and_validate(self, model=None, epochs=None, to_epoch=None): """ Train a model and validate according to schedule. The various settings of this process can be controlled with the attributes of orca.cfg. The model will be trained on the given data, saved and validated. Logfiles of the training are saved in the output folder. Plots showing the training and validation history, as well as the weights and activations of the network are generated in the plots subfolder after every validation. The training can be resumed by executing this function again. Parameters ---------- model : ks.models.Model or str, optional Compiled keras model to use for training. Required for the first epoch (the start of training). Can also be the path to a saved keras model, which will be laoded. If model is None, the most recent saved model will be loaded automatically to continue the training. epochs : int, optional How many epochs should be trained by running this function. None for infinite. This includes the current epoch in case it is not finished yet, i.e. 1 means complete the epoch if there are files left, otherwise do the next epoch. to_epoch : int, optional Train up to and including this epoch. Can not be used together with epochs. Returns ------- model : ks.models.Model The trained keras model. """ latest_epoch = self.io.get_latest_epoch() model = self._get_model(model, logging=False) self._stored_model = model # check if the validation is missing for the latest fileno if latest_epoch is not None: state = self.history.get_state()[-1] if state["is_validated"] is False and self.val_is_due(latest_epoch): self.validate() next_epoch = self.io.get_next_epoch(latest_epoch) n_train_files = self.io.get_no_of_files("train") if to_epoch is None: epochs_left = epochs else: if epochs is not None: raise ValueError("Can not give both 'epochs' and 'to_epoch'") if latest_epoch is None: epochs_left = to_epoch else: epochs_left = max( 0, to_epoch - self.io.get_next_epoch(latest_epoch)[0] + 1 ) trained_epochs = 0 while epochs_left is None or trained_epochs < epochs_left: # Train on remaining files for file_no in range(next_epoch[1], n_train_files + 1): curr_epoch = (next_epoch[0], file_no) self.train(model) if self.val_is_due(curr_epoch): self.validate() next_epoch = (next_epoch[0] + 1, 1) trained_epochs += 1 self._stored_model = None return model
[docs] def train(self, model=None): """ Trains a model on the next file. The progress of the training is also logged and plotted. Parameters ---------- model : ks.models.Model or str, optional Compiled keras model to use for training. Required for the first epoch (the start of training). Can also be the path to a saved keras model, which will be laoded. If model is None, the most recent saved model will be loaded automatically to continue the training. Returns ------- history : dict The history of the training on this file. A record of training loss values and metrics values. """ # Create folder structure self.io.get_subfolder(create=True) latest_epoch = self.io.get_latest_epoch() model = self._get_model(model, logging=True) self._set_up(model, logging=True) # epoch about to be trained next_epoch = self.io.get_next_epoch(latest_epoch) next_epoch_float = self.io.get_epoch_float(*next_epoch) if latest_epoch is None: self.io.check_connections(model) logging.log_start_training(self) model_path = self.io.get_model_path(*next_epoch) model_path_local = self.io.get_model_path(*next_epoch, local=True) if os.path.isfile(model_path): raise FileExistsError( "Can not train model in epoch {} file {}, this model has " "already been saved!".format(*next_epoch) ) smry_logger = logging.SummaryLogger(self, model) if self.cfg.learning_rate is not None: tf.keras.backend.set_value( model.optimizer.lr, self.io.get_learning_rate(next_epoch) ) files_dict = self.io.get_file("train", next_epoch[1]) line = "Training in epoch {} on file {}/{}".format( next_epoch[0], next_epoch[1], self.io.get_no_of_files("train") ) self.io.print_log(line) self.io.print_log("-" * len(line)) self.io.print_log( "Learning rate is at {}".format( tf.keras.backend.get_value(model.optimizer.lr) ) ) self.io.print_log("Inputs and files:") for input_name, input_file in files_dict.items(): self.io.print_log( " {}: \t{}".format(input_name, os.path.basename(input_file)) ) start_time = time.time() history = backend.train_model(self, model, next_epoch, batch_logger=True) elapsed_s = int(time.time() - start_time) model.save(model_path) smry_logger.write_line( next_epoch_float, tf.keras.backend.get_value(model.optimizer.lr), history_train=history, ) self.io.print_log("Training results:") for metric_name, loss in history.items(): self.io.print_log(f" {metric_name}: \t{loss}") self.io.print_log(f"Elapsed time: {timedelta(seconds=elapsed_s)}") self.io.print_log(f"Saved model to: {model_path_local}\n") update_summary_plot(self) if self.cfg.cleanup_models: self.cleanup_models() return history
[docs] def validate(self): """ Validate the most recent saved model on all validation files. Will also log the progress, as well as update the summary plot and plot weights and activations of the model. Returns ------- history : dict The history of the validation on all files. A record of validation loss values and metrics values. """ latest_epoch = self.io.get_latest_epoch() if latest_epoch is None: raise ValueError("Can not validate: No saved model found") if self.history.get_state()[-1]["is_validated"] is True: raise ValueError( "Can not validate in epoch {} file {}: " "Has already been validated".format(*latest_epoch) ) if self._stored_model is None: model = self.load_saved_model(*latest_epoch) else: model = self._stored_model self._set_up(model, logging=True) epoch_float = self.io.get_epoch_float(*latest_epoch) smry_logger = logging.SummaryLogger(self, model) logging.log_start_validation(self) start_time = time.time() history = backend.validate_model(self, model) elapsed_s = int(time.time() - start_time) self.io.print_log("Validation results:") for metric_name, loss in history.items(): self.io.print_log(f" {metric_name}: \t{loss}") self.io.print_log(f"Elapsed time: {timedelta(seconds=elapsed_s)}\n") smry_logger.write_line(epoch_float, "n/a", history_val=history) update_summary_plot(self) if self.cfg.cleanup_models: self.cleanup_models() return history
[docs] def predict(self, epoch=None, fileno=None, samples=None): """ Make a prediction if it does not exist yet, and return its filepath. Load the model with the lowest validation loss, let it predict on all samples of the validation set in the toml list, and save this prediction together with all the y_values as h5 file(s) in the predictions subfolder. Parameters ---------- epoch : int, optional Epoch of a model to load. Default: lowest val loss. fileno : int, optional File number of a model to load. Default: lowest val loss. samples : int, optional Don't use the full validation files, but just the given number of samples. Returns ------- pred_filename : List List to the paths of all the prediction files. """ epoch, fileno = self._get_auto_epoch(epoch, fileno) if self._check_if_pred_already_done(epoch, fileno): print("Prediction has already been done.") pred_filepaths = self.io.get_pred_files_list(epoch, fileno) else: if self._stored_model is None: model = self.load_saved_model(epoch, fileno, logging=False) else: model = self._stored_model self._set_up(model) start_time = time.time() backend.make_model_prediction(self, model, epoch, fileno, samples=samples) elapsed_s = int(time.time() - start_time) print("Finished predicting on all validation files.") print("Elapsed time: {}\n".format(timedelta(seconds=elapsed_s))) pred_filepaths = self.io.get_pred_files_list(epoch, fileno) return pred_filepaths
[docs] def inference(self, epoch=None, fileno=None, as_generator=False): """ Make an inference and return the filepaths. Load the model with the lowest validation loss, let it predict on all samples of all inference files in the toml list, and save these predictions as h5 files in the predictions subfolder. y values will only be added if they are in the input file, so this can be used on un-labeled data as well. Parameters ---------- epoch : int, optional Epoch of a model to load. Default: lowest val loss. fileno : int, optional File number of a model to load. Default: lowest val loss. as_generator : bool If true, return a generator, which yields the output filename after the inference of each file. If false (default), do all files back to back. Returns ------- filenames : list List to the paths of all created output files. """ gen = self._inference(epoch=epoch, fileno=fileno) if as_generator: return gen else: return [filename for filename in gen]
def _inference(self, epoch=None, fileno=None): """Get generator of doing inference, file by file.""" epoch, fileno = self._get_auto_epoch(epoch, fileno) if self._stored_model is None: model = self.load_saved_model(epoch, fileno, logging=False) else: model = self._stored_model self._set_up(model) filenames = [] for files_dict in self.io.yield_files("inference"): # output filename is based on name of file in first input first_filename = os.path.basename(list(files_dict.values())[0]) output_filename = "model_epoch_{}_file_{}_on_{}".format( epoch, fileno, first_filename ) output_path = os.path.join( self.io.get_subfolder("inference"), output_filename ) filenames.append(output_path) if os.path.exists(output_path): print("File {} exists already, skipping...".format(output_filename)) continue print(f"Working on file {first_filename}") start_time = time.time() backend.h5_inference( self, model, files_dict, output_path, use_def_label=False ) elapsed_s = int(time.time() - start_time) print(f"Finished on file {first_filename} in {elapsed_s/60} min") yield output_path
[docs] def inference_on_file( self, input_file, output_file=None, saved_model=None, epoch=None, fileno=None ): """ Save the model prediction for each sample of the given input file. Useful for sharing a saved model, since the usual training folder structure is not necessarily required. Parameters --------- input_file : str or dict Path to a DL file on which the inference should be done on. Can also be a dict mapping input names to files. output_file : str, optional Save output to an h5 file with this name. Default: auto-generate name and save in same directory as the input file. saved_model : str, optional Optional path to a saved model, which will be used instead of loading the one with the given epoch/fileno. epoch : int, optional Epoch of a model to load from the directory. Only relevant if saved_model is None. Default: lowest val loss. fileno : int, optional File number of a model to load from the directory. Only relevant if saved_model is None. Default: lowest val loss. Returns ------- str Name of the output file. """ if saved_model is None: epoch, fileno = self._get_auto_epoch(epoch, fileno) model = self.load_saved_model(epoch, fileno, logging=False) else: model = self._load_model(saved_model) self._set_up(model) if isinstance(input_file, str): input_file = {model.input_names[0]: input_file} if output_file is None: out_path, first_filename = os.path.split(list(input_file.values())[0]) output_file = os.path.join(out_path, "dl_pred_{}".format(first_filename)) start_time = time.time() backend.h5_inference( orga=self, model=model, files_dict=input_file, output_path=output_file, ) elapsed_s = int(time.time() - start_time) print(f"Finished inference in {elapsed_s / 60} min") return output_file
[docs] def cleanup_models(self): """ Delete all models except for the the most recent one (to continue training), and the ones with the highest and lowest loss/metrics. """ all_epochs = self.io.get_all_epochs() epochs_to_keep = { self.io.get_latest_epoch(), } try: for metric in self.history.get_metrics(): epochs_to_keep.add( self.history.get_best_epoch_fileno( metric=f"val_{metric}", mini=True ) ) epochs_to_keep.add( self.history.get_best_epoch_fileno( metric=f"val_{metric}", mini=False ) ) except ValueError: # no best epoch exists pass for epoch in epochs_to_keep: if epoch not in all_epochs: warnings.warn( f"ERROR: keeping_epoch {epoch} not in available epochs {all_epochs}, " f"skipping clean-up of models!" ) return print("\nClean-up saved models:") for epoch in all_epochs: model_path = self.io.get_model_path(epoch[0], epoch[1]) model_name = os.path.basename(model_path) if epoch in epochs_to_keep: print("Keeping model {}".format(model_name)) else: print("Deleting model {}".format(model_name)) os.remove(model_path)
def _check_if_pred_already_done(self, epoch, fileno): """ Checks if the prediction has already been done before. (-> predicted on all validation files) Returns ------- pred_done : bool Boolean flag to specify if the prediction has already been fully done or not. """ latest_pred_file_no = self.io.get_latest_prediction_file_no(epoch, fileno) total_no_of_val_files = self.io.get_no_of_files("val") if latest_pred_file_no is None: pred_done = False elif latest_pred_file_no == total_no_of_val_files: return True else: pred_done = False return pred_done def _get_auto_epoch(self, epoch, fileno): """Automatically retrieve best epoch/fileno if they are none.""" if fileno is None and epoch is None: epoch, fileno = self.history.get_best_epoch_fileno() print("Automatically set epoch to epoch {} file {}.".format(epoch, fileno)) elif fileno is None or epoch is None: raise ValueError("Either both or none of epoch and fileno must be None") return epoch, fileno
[docs] def get_xs_mean(self, logging=False): """ Set and return the zero center image for each list input. Requires the cfg.zero_center_folder to be set. If no existing image for the given input files is found in the folder, it will be calculated and saved by averaging over all samples in the train dataset. Parameters ---------- logging : bool If true, the execution of this function will be logged into the full summary in the output folder if called for the first time. Returns ------- dict Dict of numpy arrays that contains the mean_image of the x dataset (1 array per list input). Example format: { "input_A" : ndarray, "input_B" : ndarray } """ if self.xs_mean is None: if self.cfg.zero_center_folder is None: raise ValueError( "Can not calculate zero center: " "No zero center folder given" ) self.xs_mean = load_zero_center_data(self, logging=logging) return self.xs_mean
[docs] def load_saved_model(self, epoch, fileno, logging=False): """ Load a saved model. Parameters ---------- epoch : int Epoch of the saved model. If both this and fileno are -1, load the most recent model. fileno : int Fileno of the saved model. logging : bool If True, will log this function call into the log.txt file. Returns ------- model : keras model """ path_of_model = self.io.get_model_path(epoch, fileno) path_loc = self.io.get_model_path(epoch, fileno, local=True) self.io.print_log("Loading saved model: " + path_loc, logging=logging) return self._load_model(path_of_model)
def _get_model(self, model, logging=False): """Load most recent saved model or use user model.""" latest_epoch = self.io.get_latest_epoch() if latest_epoch is None: # new training, log info about model if model is None: raise ValueError( "You need to provide a compiled keras model " "for the start of the training! (You gave None)" ) elif isinstance(model, str): # path to a saved model self.io.print_log("Loading model from " + model, logging=logging) model = self._load_model(model) if logging: self._save_as_json(model) model.summary(print_fn=self.io.print_log) try: plots_folder = self.io.get_subfolder("plots", create=True) tf.keras.utils.plot_model( model, plots_folder + "/model_plot.png", show_shapes=True ) except (ImportError, AttributeError) as e: # TODO remove AttributeError once https://github.com/tensorflow/tensorflow/issues/38988 is fixed warnings.warn("Can not plot model: " + str(e)) else: # resuming training, load model if it is not given if model is None: model = self.load_saved_model(*latest_epoch, logging=logging) elif isinstance(model, str): # path to a saved model self.io.print_log("Loading model from " + model, logging=logging) model = self._load_model(model) return model def _load_model(self, filepath): """Load from path, with custom objects and parallized.""" with self.get_strategy().scope(): model = tf.keras.models.load_model( filepath, custom_objects=self.cfg.get_custom_objects() ) return model def _save_as_json(self, model): """Save the architecture of a model as json to fixed path.""" json_filename = "model_arch.json" json_string = model.to_json(indent=1) model_folder = self.io.get_subfolder("saved_models", create=True) with open(os.path.join(model_folder, json_filename), "w") as f: f.write(json_string) def _set_up(self, model, logging=False): """Necessary setup for training, validating and predicting.""" if self.cfg.label_modifier is None: self._setup_auto_lmod(model) if self.cfg.zero_center_folder is not None: self.get_xs_mean(logging) def _setup_auto_lmod(self, model): """Set up the auto label modifier for the given model.""" self._auto_label_modifier = lib.label_modifiers.ColumnLabels(model)
[docs] def val_is_due(self, epoch=None): """ True if validation is due on given epoch according to schedule. Does not check if it has been done already. """ if epoch is None: epoch = self.io.get_latest_epoch() n_train_files = self.io.get_no_of_files("train") val_sched = (epoch[1] == n_train_files) or ( self.cfg.validate_interval is not None and epoch[1] % self.cfg.validate_interval == 0 ) return val_sched
[docs] def get_strategy(self): """Get the strategy for distributed training.""" if self._strategy is None: if self.cfg.multi_gpu and len(tf.config.list_physical_devices("GPU")) > 1: self._strategy = tf.distribute.MirroredStrategy() print(f"Number of GPUs: {self._strategy.num_replicas_in_sync}") else: self._strategy = tf.distribute.get_strategy() return self._strategy
[docs]class Configuration(object): """ Contains all the configurable options in the OrcaNet scripts. All of these public attributes (the ones without a leading underscore) can be changed either directly or with a .toml config file via the method update_config(). Parameters ---------- output_folder : str Name of the folder of this model in which everything will be saved, e.g., the summary.txt log file is located in here. list_file : str or None Path to a toml list file with pathes to all the h5 files that should be used for training and validation. config_file : str or None Path to a toml config file with attributes that are used instead of the default ones. kwargs Overwrites the values given in the config file. Attributes ---------- batchsize : int Batchsize that will be used for the training, validation and inference of the network. During training and validation, the last batch in each file will be skipped if it has fewer samples than the batchsize. callback_train : keras callback or list or None Callback or list of callbacks to use during training. class_weight : dict or None Optional dictionary mapping class indices (integers) to a weight (float) value, used for weighting the loss function (during training only). This can be useful to tell the model to "pay more attention" to samples from an under-represented class. cleanup_models : bool If true, will only keep the best (in terms of val loss) and the most recent from all saved models in order to save disk space. custom_objects : dict, optional Optional dictionary mapping names (strings) to custom classes or functions to be considered by keras during deserialization of models. dataset_modifier : function or None For orga.predict: Function that determines which datasets get created in the resulting h5 file. Default: save as array, i.e. every output layer will get one dataset each for both the label and the prediction, and one dataset containing the y_values from the validation files. fixed_batchsize : bool The last batch in the file might be smaller then the batchsize. Usually, this is no problem, but set to True to skip this batch [default: False]. key_x_values : str The name of the datagroup in the h5 input files which contains the samples for the network. key_y_values : str The name of the datagroup in the h5 input files which contains the info for the labels. label_modifier : function or None Operation to be performed on batches of y_values read from the input files before they are fed into the model as labels. If None is given, all y_values with the same name as the output layers will be passed to the model as a dict, with the keys being the dtype names. learning_rate : float, tuple, function, str (optional) The learning rate for the training. If None is given, don't change the learning rate at all. If it is a float: The learning rate will be constantly this value. If it is a tuple of two floats: The first float gives the learning rate in epoch 1 file 1, and the second float gives the decrease of the learning rate per file (e.g. 0.1 for 10% decrease per file). If it is a function: Takes as an input the epoch and the file number (in this order), and returns the learning rate. Both epoch and fileno start at 1, i.e. 1, 1 is the start of the training. If it is a str: Path to a csv file inside the main folder, containing 3 columns with the epoch, fileno, and the value the lr will be set to when reaching this epoch/fileno. max_queue_size : int max_queue_size option of the keras training and evaluation generator methods. How many batches get preloaded from the generator. multi_gpu : bool Use all availble GPUs (distributed training if theres more then one). n_events : None or int For testing purposes. If not the whole .h5 file should be used for training, define the number of samples. sample_modifier : function or None Operation to be performed on batches of x_values read from the input files before they are fed into the model as samples. shuffle_train : bool If true, the order in which batches are read out from the files during training are randomized each time they are read out. train_logger_display : int How many batches should be averaged for one line in the training log files. train_logger_flush : int After how many lines the training log file should be flushed (updated on the disk). -1 for flush at the end of the file only. use_scratch_ssd : bool Declares if the input files should be copied to a local temp dir, i.e. the path defined in the 'TMPDIR' environment variable. validate_interval : int or None Validate the model after this many training files have been trained on in an epoch. There will always be a validation at the end of an epoch. None for only validate at the end of an epoch. Example: validate_interval=3 --> Validate after file 3, 6, 9, ... verbose_train : int verbose option of keras.model.fit_generator. 0 = silent, 1 = progress bar, 2 = one line per epoch. verbose_val : int verbose option of evaluate_generator. 0 = silent, 1 = progress bar. y_field_names : tuple or list or str, optional During train and val, read out only these fields from the y dataset. --> Speed up, especially if there are many fields. zero_center_folder : None or str Path to a folder in which zero centering images are stored. If this path is set, zero centering images for the given dataset will either be calculated and saved automatically at the start of the training, or loaded if they have been saved before. """ # TODO add a clober script that properly deletes models + logfiles def __init__(self, output_folder, list_file=None, config_file=None, **kwargs): self.batchsize = 64 self.callback_train = [] self.class_weight = None self.cleanup_models = False self.custom_objects = {} self.dataset_modifier = None self.fixed_batchsize = False self.key_x_values = "x" self.key_y_values = "y" self.label_modifier = None self.learning_rate = None self.make_weight_plots = False # Removed in v0.11.1 self.max_queue_size = 10 self.multi_gpu = True self.n_events = None self.sample_modifier = None self.shuffle_train = False self.train_logger_display = 100 self.train_logger_flush = -1 self.use_scratch_ssd = False self.validate_interval = None self.verbose_train = 1 self.verbose_val = 0 self.y_field_names = None self.zero_center_folder = None self._default_values = dict(self.__dict__) # Main folder: if output_folder[-1] == "/": self.output_folder = output_folder else: self.output_folder = output_folder + "/" # Private attributes: self._files_dict = { "train": None, "val": None, "inference": None, } self._list_file = None # Load the optionally given list and config files. if list_file is not None: self.import_list_file(list_file) if config_file is not None: self.update_config(config_file) # set given kwargs: for key, val in kwargs.items(): if hasattr(self, key): setattr(self, key, val) else: raise AttributeError("Unknown attribute {}".format(key)) # deprecation warning TODO remove in the future if self.make_weight_plots: warnings.warn("make_weight_plots was removed in version v0.11.1")
[docs] def import_list_file(self, list_file): """ Import the filepaths of the h5 files from a toml list file. Parameters ---------- list_file : str Path to the toml list file. """ if self._list_file is not None: raise ValueError( "Can not load list file: Has already been loaded! " "({})".format(self._list_file) ) file_content = toml.load(list_file) name_mapping = { "train_files": "train", "validation_files": "val", "inference_files": "inference", } for toml_name, files_dict_name in name_mapping.items(): files = _extract_filepaths(file_content, toml_name) self._files_dict[files_dict_name] = files or None self._list_file = list_file
[docs] def update_config(self, config_file): """ Update the default cfg parameters with values from a toml config file. Parameters ---------- config_file : str Path to a toml config file. """ user_values = toml.load(config_file)["config"] for key, value in user_values.items(): if hasattr(self, key): if key == "sample_modifier": value = orcanet.misc.from_register( toml_entry=value, register=lib.sample_modifiers.smods ) elif key == "dataset_modifier": value = orcanet.misc.from_register( toml_entry=value, register=lib.dataset_modifiers.dmods ) elif key == "label_modifier": value = orcanet.misc.from_register( toml_entry=value, register=lib.label_modifiers.lmods ) setattr(self, key, value) else: raise AttributeError(f"Unknown attribute {key} in config file")
[docs] def get_list_file(self): """ Returns the path to the list file that was used to set the training and validation files. None if no list file has been used. """ return self._list_file
[docs] def get_files(self, which): """ Get the training or validation file paths for each list input set. Parameters ---------- which : str Either "train", "val" or "inference". Returns ------- dict A dict containing the paths to the training or validation files on which the model will be trained on. Example for the format for two input sets with two files each: { "input_A" : ('path/to/set_A_file_1.h5', 'path/to/set_A_file_2.h5'), "input_B" : ('path/to/set_B_file_1.h5', 'path/to/set_B_file_2.h5'), } """ if which not in self._files_dict.keys(): raise NameError("Unknown fileset name ", which) if self._files_dict[which] is None: raise AttributeError("No {} files have been specified!".format(which)) return self._files_dict[which]
[docs] def get_custom_objects(self): """Get user custom objects + orcanet internal ones.""" orcanet_co = medgeconv.custom_objects orcanet_loss_functions = lib.losses.loss_functions return {**orcanet_co, **orcanet_loss_functions, **self.custom_objects}
def _get_h5_files(folder): h5files = [] for f in os.listdir(folder): if f.endswith(".h5"): h5files.append(os.path.join(folder, f)) h5files.sort() if not h5files: warnings.warn(f"No .h5 files in dir {folder}!") return h5files def _extract_filepaths(file_content, which): """ Get train, val or inf filepaths of all inputs from a toml readout. Makes sure that all input have the same number of files. """ # alternative names to write in the toml file aliases = { "train_files": ("training_files", "train", "training"), "validation_files": ("val_files", "val", "validation"), "inference_files": ("inf_files", "inf", "inference"), } assert which in aliases.keys(), f"{which} not in {list(aliases.keys())}" def get_alias(ident): for k, v in aliases.items(): if ident == k or ident in v: return k else: raise NameError( f"Unknown argument '{ident}' in toml file: " f"Must be either of {list(aliases.keys())}" ) files = {} n_files = [] for input_name, input_files in file_content.items(): for filetype, filetyp_files in input_files.items(): if get_alias(filetype) != which: continue # if a dir is given as a filepath, use all h5 files in that dir instead expanded_files = [] for path in filetyp_files: if os.path.isdir(path): expanded_files.extend(_get_h5_files(path)) else: expanded_files.append(path) files[input_name] = tuple(expanded_files) # store number of files for this output n_files.append(len(expanded_files)) if n_files and n_files.count(n_files[0]) != len(n_files): raise ValueError("Input with different number of {} in toml list".format(which)) return files